Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 103(1-1): 013106, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601565

RESUMO

This paper investigates the importance of molecular viscosity and diffusivity for the prediction of transitional and shock-driven mixing flows featuring high and low Reynolds and Mach number regions. Two representative problems are computed with implicit large-eddy simulations using the inviscid Euler equations (EE) and viscous Navier-Stokes equations (NSE): the Taylor-Green vortex at Reynolds number Re=3000 and initial Mach number Ma=0.28, and an air-SF_{6}-air gas curtain subjected to two shock waves at Ma=1.2. The primary focus is on differences between NSE and EE predictions due to viscous effects. The outcome of the paper illustrates the advantages of utilizing NSE. In contrast to the EE, where the effective viscosity decreases upon grid refinement, NSE predictions can be assessed for simulations of flows with transition to turbulence at prescribed constant Re. The NSE can achieve better agreement between solutions and reference data, and the results converge upon grid refinement. On the other hand, the EE predictions do not converge with grid refinement, and can only exhibit similarities with the NSE results at coarse grid resolutions. We also investigate the effect of viscous effects on the dynamics of the coherent and turbulent fields, as well as on the mechanisms contributing to the production and diffusion of vorticity. The results show that nominally inviscid calculations can exhibit significantly varying flow dynamics driven by changing effective resolution-dependent Reynolds number, and highlight the role of viscous processes affecting the vorticity field. These tendencies become more pronounced upon grid refinement. The discussion of the results concludes with the assessment of the computational cost of inviscid and viscous computations.

2.
Phys Rev Lett ; 97(4): 048301, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16907617

RESUMO

For two-species particulate systems, ensemble averaged continuity and momentum equations for each species are derived based on the Liouville equation of the system. The ensemble average used is species specific. It is found that the interaction between species results in not only the interspecies force but also a stress in the momentum equations. In the limit that particles of one of the species can be considered as a continuum, the existence of the interspecies stress enables us to reduce the derived equations to the familiar form for dispersed two-phase flows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...